.Make certain being compatible with various platforms, including.NET 6.0,. NET Framework 4.6.2, and.NET Specification 2.0 as well as above.Reduce reliances to prevent version problems and the demand for tiing redirects.Recording Sound Data.One of the key functions of the SDK is actually audio transcription. Developers may record audio documents asynchronously or in real-time. Below is actually an example of exactly how to translate an audio documents:.making use of AssemblyAI.utilizing AssemblyAI.Transcripts.var customer = new AssemblyAIClient(" YOUR_API_KEY").var records = await client.Transcripts.TranscribeAsync( new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3". ).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).For local files, similar code can be utilized to achieve transcription.wait for using var stream = new FileStream("./ nbc.mp3", FileMode.Open).var records = await client.Transcripts.TranscribeAsync(.stream,.brand new TranscriptOptionalParams.LanguageCode = TranscriptLanguageCode.EnUs.).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).Real-Time Audio Transcription.The SDK likewise holds real-time audio transcription using Streaming Speech-to-Text. This attribute is actually particularly valuable for applications needing prompt processing of audio records.making use of AssemblyAI.Realtime.wait for using var scribe = new RealtimeTranscriber( new RealtimeTranscriberOptions.ApiKey="YOUR_API_KEY",.SampleRate = 16_000. ).transcriber.PartialTranscriptReceived.Subscribe( transcript =>Console.WriteLine($" Partial: transcript.Text "). ).transcriber.FinalTranscriptReceived.Subscribe( transcript =>Console.WriteLine($" Last: transcript.Text "). ).wait for transcriber.ConnectAsync().// Pseudocode for obtaining audio coming from a mic as an example.GetAudio( async (chunk) => await transcriber.SendAudioAsync( portion)).await transcriber.CloseAsync().Taking Advantage Of LeMUR for LLM Apps.The SDK includes with LeMUR to permit developers to create huge language design (LLM) applications on voice information. Right here is actually an instance:.var lemurTaskParams = brand-new LemurTaskParams.Motivate="Give a quick rundown of the records.",.TranscriptIds = [transcript.Id],.FinalModel = LemurModel.AnthropicClaude3 _ 5_Sonnet..var reaction = wait for client.Lemur.TaskAsync( lemurTaskParams).Console.WriteLine( response.Response).Audio Knowledge Styles.Additionally, the SDK comes with built-in support for audio knowledge models, permitting sentiment analysis and also various other state-of-the-art attributes.var transcript = await client.Transcripts.TranscribeAsync( brand-new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3",.SentimentAnalysis = accurate. ).foreach (var result in transcript.SentimentAnalysisResults!).Console.WriteLine( result.Text).Console.WriteLine( result.Sentiment)// GOOD, NEUTRAL, or even downside.Console.WriteLine( result.Confidence).Console.WriteLine($" Timestamp: result.Start - result.End ").For more information, go to the official AssemblyAI blog.Image source: Shutterstock.